InAs Photodiodes for 3.43 μm Radiation Thermometry

نویسندگان

  • Xinxin Zhou
  • Xiao Meng
  • Andrey B. Krysa
  • Jon R. Willmott
  • Jo Shien Ng
  • Chee Hing Tan
چکیده

We report an evaluation of an epitaxially grown uncooled InAs photodiode for the use in radiation thermometry. Radiation thermometry measurements was taken using the photodiode covered blackbody temperatures of 50 °C–300 °C. By determining the photocurrent and signal-to-noise ratio, the temperature error of the measurements was deduced. It was found that an uncooled InAs photodiode, with the peak and cutoff wavelengths of 3.35 and 3.55 μm, respectively, measured a temperature of 50 °C, with an error of 0.17 °C. Many plastics have C–H molecular bond absorptions at 3.43 μm and hence radiate thermally at this wavelength. Our results suggest that InAs photodiodes are well suited to measure the temperature of plastics above 50 °C. When tested with a narrow bandpass filter at 3.43 μm and blackbody temperatures from 50 °C–300 °C, the InAs photodiode was also found to produce a higher output photocurrent, compared with a commercial PbSe detectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-photon property characterization of 1.3 μm emissions from InAs/GaAs quantum dots using silicon avalanche photodiodes

We developed a new approach to test the single-photon emissions of semiconductor quantum dots (QDs) in the optical communication band. A diamond-anvil cell pressure device was used for blue-shifting the 1.3 μm emissions of InAs/GaAs QDs to 0.9 μm for detection by silicon avalanche photodiodes. The obtained g((2))(0) values from the second-order autocorrelation function measurements of several Q...

متن کامل

Growth and fabrication of InAs/GaSb type II superlattice mid-wavelength infrared photodetectors

We report our recent work on the growth and fabrication of InAs/GaSb type II superlattice photodiode detectors. The superlattice consists of 9 monolayer InAs/12 monolayer GaSb in each period. Lattice mismatch between the GaSb substrate and the superlattice is 1.5 × 10-4. The full width at half maximum of the first-order satellite peak from X-ray diffraction is 28 arc sec. The P-I-N photodiodes ...

متن کامل

Improvement of Terahertz Wave Radiation for InAs Nanowires by Simple Dipping into Tap Water

We report improvement of terahertz (THz) wave radiation for Si-based catalyst-free InAs nanowires (NWs) by simple dipping into tap water (DTW). In addition, the possibility of using InAs NWs as a cost-effective method for biomedical applications is discussed by comparison to bulk InAs. The peak-to-peak current signals (PPCSs) of InAs NWs measured from THz time-domain spectroscopy increased with...

متن کامل

Picosecond laser ranging at wavelengths up to 2.4 μm using an InAs avalanche photodiode

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version. Copyright and all moral rights to the version of the paper presented here belong to the individual ...

متن کامل

Comparison of the current of UV ray radiation on PIN Silicon photodiode and Gallium Arsenide

The high-energy UV ray radiation on PIN Silicon photodiodes reduces the optimal parameters of these photodiodes. In this paper, by representing a model, we compare the effect of UV dose on the bright current in these two types of photodiodes and confirm the analytic relationships in order to simulate a model with the help of the Silvaco- Atlas software. In this model, Silicon photodiodes and Ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015